Fourier-transform Raman spectroscopy applied to photobiological systems.
نویسندگان
چکیده
Fluorescence and initiation of photoreactions are problems frequently encountered with resonance Raman spectroscopy of photobiological systems. These problems can be circumvented with Fourier-transform Raman spectroscopy by using the 1064-nm wavelength of a continuous wave neodymium-yttrium/aluminum-garnet laser as the probing beam. This wavelength is far from the absorption band of most pigments. Yet, the spectra of the investigated systems--bacteriorhodopsin, rhodopsin, and phycocyanin--show that these systems are still dominated by the chromophore, or that preresonant Raman scattering is still prevalent. Only for rhodopsin were contributions of the protein and the membrane discernible. The spectra of phycocyanin differ considerably from those obtained by excitation into the UV-absorption band. The results show the usefulness of this method and its wide applicability. In addition, analysis of the relative preresonant scattering cross sections may provide a detailed insight into the scattering mechanism.
منابع مشابه
"Self-absorption" phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials.
While cellulosic and lignocellulosic materials have been studied using conventional Raman spectroscopy, availability of near-infrared (NIR) Fourier transform (FT) Raman instrumentation has made studying these materials much more convenient.1 This is especially true because the problem of laser-induced fluorescence can be avoided or minimized in FT-Raman (NIR Raman) spectroscopy. More recently, ...
متن کاملAdapting Raman spectra from laboratory spectrometers to portable detection libraries.
Raman spectral data collected with high-resolution laboratory spectrometers are processed into a format suitable for importing as a user library on a 1064 nm DeltaNu first generation, field-deployable spectrometer prototype. The two laboratory systems used are a 1064 nm Bruker Fourier transform (FT)-Raman spectrometer and a 785 nm Kaiser dispersive spectrometer. The steps taken to adapt for dev...
متن کامل1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials
Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression can be achieved, the utili...
متن کاملFourier Transform Infrared and Fourier Transform Raman Spectroscopy of Polymers
This chapter covers the fundamental principles and current applications of Fourier transform (FT) infrared and Fourier transform Raman spectroscopies as utilized in the analysis of polymeric materials. The primary emphasis of the first part is on the principles and advantages of these interferometric methods, whereas the remaining sections illustrate numerous applications focusing on the struct...
متن کاملBroadband stimulated Raman scattering with Fourier-transform detection.
We propose a new approach to broadband Stimulated Raman Scattering (SRS) spectroscopy and microscopy based on time-domain Fourier transform (FT) detection of the stimulated Raman gain (SRG) spectrum. We generate two phase-locked replicas of the Stokes pulse after the sample using a passive birefringent interferometer and measure by the FT technique both the Stokes and the SRG spectra. Our appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 15 شماره
صفحات -
تاریخ انتشار 1990